Research progress on lithium dendrite growth
DOI:
https://doi.org/10.63313/AERpc.2008Keywords:
Lithium dendrites, simulation model, in - situ characterizationAbstract
This article reviews the progress in the growth mechanisms, suppression strate-gies, and monitoring techniques of lithium dendrites. The high - capacity poten-tial of lithium - metal anodes is restricted by cycle decay, short - circuits, and thermal runaway caused by dendrites. Their growth originates from electro-chemical imbalance and interfacial heterogeneity. Multi - physics models reveal the regulation rules of pore geometry and crystal orientation on morphology evolution. Suppression strategies center on constructing high - conductivity LiF interfaces, designing 3D porous anodes, and pressure control. In - situ charac-terization technologies (such as X - ray tomography and fiber - optic sensing) realize dynamic monitoring of the coupled mechanisms of dendrite growth and SEI reconstruction. Current challenges involve cross - scale model verification and real - time monitoring technology development. In the future, it's necessary to combine machine learning with intelligent sensor networks to promote the practical application of high - safety lithium - metal batteries.
References
[1] Aogaki, R., & Makino, T. (1981). Theory of powdered metal formation in electrochemis-try—morphological instability in galvanostatic crystal growth under diffusion control. Electrochimica Acta, 26(11), 1509-1517. https://doi.org/https://doi.org/10.1016/0013-4686(81)85123-7
[2] Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J. (2022). Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling using open-source finite element library. Journal of Energy Storage, 53. https://doi.org/10.1016/j.est.2022.104892
[3] Blomgren, G. E. (2017). The Development and Future of Lithium Ion Batteries. Journal of The Electrochemical Society, 164(1), A5019-A5025. https://doi.org/10.1149/2.0251701jes
[4] Brissot, C., Rosso, M., Chazalviel, J. N., & Lascaud, S. (1999). Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources, 81-82, 925-929. https://doi.org/https://doi.org/10.1016/S0378-7753(98)00242-0
[5] Bruce, P. G., & Vincent, C. A. (1987). Steady state current flow in solid binary electrolyte cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 225(1), 1-17. https://doi.org/https://doi.org/10.1016/0022-0728(87)80001-3
[6] Chang, S., Jin, X., He, Q., Liu, T., Fang, J., Shen, Z., . . . Lu, J. (2022). In Situ Formation of Poly-cyclic Aromatic Hydrocarbons as an Artificial Hybrid Layer for Lithium Metal Anodes. Nano Letters, 22(1), 263-270. https://doi.org/10.1021/acs.nanolett.1c03624
[7] Chazalviel, J. N. (1990). Electrochemical aspects of the generation of ramified metallic electrodeposits. Physical Review A, 42(12), 7355-7367. https://doi.org/10.1103/PhysRevA.42.7355
[8] Cheng, X., Zhang, R., Zhao, C., & Zhang, Q. (2017). Toward Safe Lithium Metal Anode in Re-chargeable Batteries: A Review. Chemical Reviews, 117(15), 10403-10473. https://doi.org/10.1021/acs.chemrev.7b00115
[9] Cremasco, L. F., Anchieta, C. G., Nepel, T. C. M., Miranda, A. N., Sousa, B. P., Rodella, C. B., Doubek, G. (2021). Operando Synchrotron XRD of Bromide Mediated Li–O2 Battery. ACS Applied Materials & Interfaces, 13(11), 13123-13131. https://doi.org/10.1021/acsami.0c21791
[10] Dachraoui, W., Kühnel, R.-S., Battaglia, C., & Erni, R. (2024). Nucleation, growth and disso-lution of Li metal dendrites and the formation of dead Li in Li-ion batteries investigated by operando electrochemical liquid cell scanning transmission electron microscopy. Nano Energy, 130. https://doi.org/10.1016/j.nanoen.2024.110086
[11] Diouf, B., & Pode, R. (2015). Potential of lithium-ion batteries in renewable energy. Re-newable Energy, 76, 375-380. https://doi.org/10.1016/j.renene.2014.11.058
[12] Dutoit, C.-E., Tang, M., Gourier, D., Tarascon, J.-M., Vezin, H., & Salager, E. (2021). Monitor-ing metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21598-2
[13] Fleury, V., Chazalviel, J. N., & Rosso, M. (1992). Theory and experimental evidence of elec-troconvection around electrochemical deposits. Physical Review Letters, 68(16), 2492-2495. https://doi.org/10.1103/PhysRevLett.68.2492
[14] Gao, A., Jiang, P., Duan, M., Lai, H., Zhou, Y., Zhang, X., . . . Meng, H. (2024). Interphase design enabling stable cycling of all-solid-state lithium metal batteries by in-situ X-ray photoelec-tron spectroscopy lithium metal sputtering. Journal of Power Sources, 602. https://doi.org/10.1016/j.jpowsour.2024.234299
[15] Gao, H., Ai, X., Wang, H., Li, W., Wei, P., Cheng, Y., . . . Wang, M.-S. (2022). Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-32732-z
[16] Gao, Y., Du, X., Hou, Z., Shen, X., Mai, Y.-W., Tarascon, J.-M., & Zhang, B. (2021). Unraveling the mechanical origin of stable solid electrolyte interphase. Joule, 5(7), 1860-1872. https://doi.org/10.1016/j.joule.2021.05.015
[17] Gotoh, K., Yamakami, T., Nishimura, I., Kometani, H., Ando, H., Hashi, K., . . . Ishida, H. (2020). Mechanisms for overcharging of carbon electrodes in lithium-ion/sodium-ion batteries analysed by operando solid-state NMR. Journal of Materials Chemistry A, 8(29), 14472-14481. https://doi.org/10.1039/d0ta04005c
[18] Gunnarsdóttir, A. B., Amanchukwu, C. V., Menkin, S., & Grey, C. P. (2020). Noninvasive In Situ NMR Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries. Journal of the American Chemical Society, 142(49), 20814-20827. https://doi.org/10.1021/jacs.0c10258
[19] Guo, J., Li, Y., Pedersen, K., & Stroe, D.-I. (2021). Lithium-Ion Battery Operation, Degrada-tion, and Aging Mechanism in Electric Vehicles: An Overview. Energies, 14(17), 5220. https://doi.org/10.3390/en14175220
[20] Guo, Y., Cai, J., Liao, Y., Hu, J., & Zhou, X. (2023). Insight into fast charging/discharging aging mechanism and degradation-safety analytics of 18650 lithium-ion batteries. Journal of Energy Storage, 72, 108331. https://doi.org/10.1016/j.est.2023.108331
[21] Hogrefe, C., Waldmann, T., Hölzle, M., & Wohlfahrt-Mehrens, M. (2023). Direct observation of internal short circuits by lithium dendrites in cross-sectional lithium-ion in situ full cells. Journal of Power Sources, 556. https://doi.org/10.1016/j.jpowsour.2022.232391
[22] Hou, C., Han, J., Liu, P., Yang, C., Huang, G., Fujita, T., . . . Chen, M. (2019). Operando Observa-tions of SEI Film Evolution by Mass‐Sensitive Scanning Transmission Electron Micros-copy. Advanced Energy Materials, 9(45), 1902675. https://doi.org/10.1002/aenm.201902675
[23] Hu, Y., Chen, W., Lei, T., Jiao, Y., Wang, H., Wang, X., . . . Xiong, J. (2020). Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy, 68. https://doi.org/10.1016/j.nanoen.2019.104373
[24] Huang, D., Zeng, C., Liu, M., Chen, X., Li, Y., Zou, J., . . . Hu, S. (2025). In Operando Raman Spectroscopy Reveals Li‐Ion Solvation in Lithium Metal Batteries. Small, 21(10). https://doi.org/10.1002/smll.202412259
[25] Huo, H., Jiang, M., Mogwitz, B., Sann, J., Yusim, Y., Zuo, T. T., . . . Janek, J. (2023). Interface Design Enabling Stable Polymer/Thiophosphate Electrolyte Separators for Dendrite‐Free Lithium Metal Batteries. Angewandte Chemie International Edition, 62(14). https://doi.org/10.1002/anie.202218044
[26] Jana, A., Woo, S. I., Vikrant, K. S. N., & García, R. E. (2019). Electrochemomechanics of lith-ium dendrite growth. Energy & Environmental Science, 12(12), 3595-3607. https://doi.org/10.1039/C9EE01864F
[27] Jiang, G., Li, K., Yu, F., Li, X., Mao, J., Jiang, W., . . . Li, Y. (2021). Robust Artificial Solid‐Electrolyte Interfaces with Biomimetic Ionic Channels for Dendrite‐Free Li Metal Anodes. Advanced Energy Materials, 11(6), 2003496. https://doi.org/10.1002/aenm.202003496
[28] Kang, J. H., Lee, J., Jung, J. W., Park, J., Jang, T., Kim, H. S., . . . Byon, H. R. (2020). Lithium Air Batteries: Air Breathing Challenges and Perspective. ACS Nano, 14(11), 14549-14578. https://doi.org/10.1021/acsnano.0c07907
[29] Kumar, R., Mitra, A., & Srinivas, T. (2022). Role of nano-additives in the thermal manage-ment of lithium-ion batteries: A review. Journal of Energy Storage, 48, 104059. https://doi.org/10.1016/j.est.2022.104059
[30] Lee, B. (2003). Review of the present status of optical fiber sensors. Optical Fiber Tech-nology, 9(2), 57-79. https://doi.org/https://doi.org/10.1016/S1068-5200(02)00527-8
[31] Lee, S.-Y., Shangguan, J., Betzler, S., Harris, S. J., Doeff, M. M., & Zheng, H. (2022). Lithium metal stripping mechanisms revealed through electrochemical liquid cell electron mi-croscopy. Nano Energy, 102. https://doi.org/10.1016/j.nanoen.2022.107641
[32] Li, H., Chao, D., Chen, B., Chen, X., Chuah, C., Tang, Y., . . . Qiao, S.-Z. (2020). Revealing Princi-ples for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 142(4), 2012-2022. https://doi.org/10.1021/jacs.9b11774
[33] Li, J., Armstrong, B. L., Daniel, C., Kiggans, J., & Wood, D. L. (2013). Optimization of multi-component aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes. Journal of Colloid and Interface Science, 405, 118-124. https://doi.org/10.1016/j.jcis.2013.05.030
[34] Li, X., Zhang, Z., Fu, K., Yang, H., Wang, X., Yang, K., . . . Tan, P. (2023). Stress State Character-ization of Li-Ion Batteries Based on a Membrane Sensor. Energy & Fuels, 37(17), 13526-13535. https://doi.org/10.1021/acs.energyfuels.3c02449
[35] Li, Z., Huang, X., Kong, L., Qin, N., Wang, Z., Yin, L., . . . Lu, Z. (2022). Gradient nano-recipes to guide lithium deposition in a tunable reservoir for anode-free batteries. Energy Storage Materials, 45, 40-47. https://doi.org/10.1016/j.ensm.2021.11.037
[36] Liu, D., Shadike, Z., Lin, R., Qian, K., Li, H., Li, K., . . . Li, B. (2019). Review of Recent Devel-opment of In Situ/Operando Characterization Techniques for Lithium Battery Research. Advanced Materials, 31(28). https://doi.org/10.1002/adma.201806620
[37] Liu, G. X., Wan, J., Shi, Y., Guo, H. J., Song, Y. X., Jiang, K. C., . . . Wan, L. J. (2022). Direct Tracking of Additive‐Regulated Evolution on the Lithium Anode in Quasi‐Solid‐State Lithium–Sulfur Batteries. Advanced Energy Materials, 12(40). https://doi.org/10.1002/aenm.202201411
[38] Liu, H., Cheng, X., Jin, Z., Zhang, R., Wang, G., Chen, L.-Q., . . . Zhang, Q. (2019). Recent ad-vances in understanding dendrite growth on alkali metal anodes. EnergyChem, 1(1), 100003. https://doi.org/10.1016/j.enchem.2019.100003
[39] Liu, H., Jiang, W., Chen, W., Lin, Q., Ren, S., Su, Y., . . . Zhang, Y. (2024). Dendrite growth and inhibition in all-solid-state lithium metal batteries: in situ optical observation. Journal of Materials Chemistry A, 12(6), 3575-3579. https://doi.org/10.1039/d3ta07366a
[40] Liu, W., Liu, P., & Mitlin, D. (2020). Review of Emerging Concepts in SEI Analysis and Arti-ficial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes. Advanced Energy Materials, 10(43), 2002297. https://doi.org/10.1002/aenm.202002297
[41] Lu, X. M., Liu, T., Wang, Y., & Du, F. H. (2022). Inside‐Outside Lithium Deposition Achieved by the Unusual Strategy of Constructing the Hierarchical Lithiophilicity for Dendrite‐Free and Durable Lithium Metal Anode. Batteries & Supercaps, 5(8). https://doi.org/10.1002/batt.202200114
[42] Luo, B., Wang, Q., Ji, W., Yu, G., Zhao, Z., Zhao, R., . . . Zhang, J. (2024). Suppressing lithium dendrite via hybrid interface layers for high performance quasi-solid-state lithium metal batteries. Chemical Engineering Journal, 492, 152152. https://doi.org/10.1016/j.cej.2024.152152
[43] Lyu, T., Luo, F., Wang, D., Bu, L., Tao, L., & Zheng, Z. (2022). Carbon/Lithium Composite Anode for Advanced Lithium Metal Batteries: Design, Progress, In Situ Characterization, and Perspectives. Advanced Energy Materials, 12(36), 2201493. https://doi.org/10.1002/aenm.202201493
[44] Mu, Z., Guo, Z., & Lin, Y.-H. (2020). Simulation of 3-D lithium dendritic evolution under multiple electrochemical states: A parallel phase field approach. Energy Storage Materials, 30, 52-58. https://doi.org/10.1016/j.ensm.2020.04.011
[45] Nayak, P. K., Yang, L., Brehm, W., & Adelhelm, P. (2018). From Lithium‐Ion to Sodium‐Ion Batteries: Advantages, Challenges, and Surprises. Angewandte Chemie International Edition, 57(1), 102-120. https://doi.org/10.1002/anie.201703772
[46] Pecher, O., Carretero-González, J., Griffith, K. J., & Grey, C. P. (2016). Materials’ Methods: NMR in Battery Research. Chemistry of Materials, 29(1), 213-242. https://doi.org/10.1021/acs.chemmater.6b03183
[47] Qi, G., Liu, X., Dou, R., Wen, Z., Zhou, W., & Liu, L. (2024). A three-dimensional multiphysics field coupled phase field model for lithium dendrite growth. Journal of Energy Storage, 101. https://doi.org/10.1016/j.est.2024.113899
[48] Rahman, T., & Alharbi, T. (2024). Exploring Lithium-Ion Battery Degradation: A Concise Review of Critical Factors, Impacts, Data-Driven Degradation Estimation Techniques, and Sustainable Directions for Energy Storage Systems. Batteries, 10(7), 220. https://doi.org/10.3390/batteries10070220
[49] Sathiya, M., Leriche, J. B., Salager, E., Gourier, D., Tarascon, J. M., & Vezin, H. (2015). Elec-tron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nature Communications, 6(1). https://doi.org/10.1038/ncomms7276
[50] Shen, X., Zhang, R., Chen, X., Cheng, X. B., Li, X., & Zhang, Q. (2020). The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength? Advanced Energy Materials, 10(10), 1903645. https://doi.org/10.1002/aenm.201903645
[51] Stępień, D., Wolff, B., Diemant, T., Kim, G.-T., Hausen, F., Bresser, D., & Passerini, S. (2023). Insights into the Lithium Nucleation and Plating/Stripping Behavior in Ionic Liquid-Based Electrolytes. ACS Applied Materials & Interfaces, 15(21), 25462-25472. https://doi.org/10.1021/acsami.3c01722
[52] Sun, M., Liu, T., Yuan, Y., Ling, M., Xu, N., Liu, Y., . . . Lu, J. (2021). Visualizing Lithium Den-drite Formation within Solid-State Electrolytes. ACS Energy Letters, 6(2), 451-458. https://doi.org/10.1021/acsenergylett.0c02314
[53] Tao, T., Lu, S., Fan, Y., Lei, W., Huang, S., & Chen, Y. (2017). Anode Improvement in Re-chargeable Lithium–Sulfur Batteries. Advanced Materials, 29(48), 1700542. https://doi.org/10.1002/adma.201700542
[54] Tung, S., Ho, S., Yang, M., Zhang, R., & Kotov, N. A. (2015). A dendrite-suppressing composite ion conductor from aramid nanofibres. Nature Communications, 6(1), 6152. https://doi.org/10.1038/ncomms7152
[55] Wandt, J., Marino, C., Gasteiger, H. A., Jakes, P., Eichel, R.-A., & Granwehr, J. (2015). Oper-ando electron paramagnetic resonance spectroscopy – formation of mossy lithium on lithium anodes during charge–discharge cycling. Energy & Environmental Science, 8(4), 1358-1367. https://doi.org/10.1039/c4ee02730b
[56] Wang, B., Wang, W., Sun, K., Xu, Y., Sun, Y., Li, Q., . . . Wu, M. (2023). Developing in situ elec-tron paramagnetic resonance characterization for understanding electron transfer of re-chargeable batteries. Nano Research, 16(10), 11992-12012. https://doi.org/10.1007/s12274-023-5855-z
[57] Wang, D., Zhang, W., Zheng, W., Cui, X., Rojo, T., & Zhang, Q. (2017). Towards High‐Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. Ad-vanced Science, 4(1), 1600168. https://doi.org/10.1002/advs.201600168
[58] Wang, G., Xiong, X., Xie, D., Fu, X., Ma, X., Li, Y., . . . Liu, M. (2019). Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Materials, 23, 701-706. https://doi.org/10.1016/j.ensm.2019.02.026
[59] Wang, Y., Ren, L., Zhang, Q., Pato, A. H., Liu, J., Lu, X., & Liu, W. (2024). Fluorine-Rich Elec-trolyte Additive for Achieving Dendrite-Free Lithium Anodes at Low Temperatures. ACS Applied Materials & Interfaces, 16(36), 47674-47682. https://doi.org/10.1021/acsami.4c10028
[60] Wang, Z., Liu, J., Wang, M., Shen, X., Qian, T., & Yan, C. (2020). Toward safer solid-state lith-ium metal batteries: a review. Nanoscale Advances, 2(5), 1828-1836. https://doi.org/10.1039/D0NA00174K
[61] Wei, C., Tan, L., Tao, Y., An, Y., Tian, Y., Jiang, H., . . . Qian, Y. (2021). Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Storage Materials, 34, 12-21. https://doi.org/10.1016/j.ensm.2020.09.006
[62] Wu, B., Chen, C., Danilov, D. L., Chen, Z., Jiang, M., Eichel, R. A., & Notten, P. H. L. (2023). Dual Additives for Stabilizing Li Deposition and SEI Formation in Anode‐Free Li‐Metal Bat-teries. ENERGY & ENVIRONMENTAL MATERIALS, 7(3). https://doi.org/10.1002/eem2.12642
[63] Wu, F., Yuan, Y., Cheng, X., Bai, Y., Li, Y., Wu, C., & Zhang, Q. (2018). Perspectives for re-straining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Materials, 15, 148-170. https://doi.org/10.1016/j.ensm.2018.03.024
[64] Xi, J., Li, J., Sun, H., Ma, T., Deng, L., Liu, N., . . . Zhang, J. (2022). In-situ monitoring of internal temperature and strain of solid-state battery based on optical fiber sensors. Sensors and Actuators A: Physical, 347. https://doi.org/10.1016/j.sna.2022.113888
[65] Xiao, J. (2019). How lithium dendrites form in liquid batteries. Science, 366(6464), 426-427. https://doi.org/10.1126/science.aay8672
[66] Xu, R., Zhang, X. Q., Cheng, X. B., Peng, H. J., Zhao, C. Z., Yan, C., & Huang, J. Q. (2018). Artifi-cial Soft–Rigid Protective Layer for Dendrite‐Free Lithium Metal Anode. Advanced Functional Materials, 28(8), 1705838. https://doi.org/10.1002/adfm.201705838
Yadav, N. G., Folastre, N., Bolmont, M., Jamali, A., Morcrette, M., & Davoisne, C. (2022). Study of failure modes in two sulphide-based solid electrolyte all-solid-state batteries via in situ SEM. Journal of Materials Chemistry A, 10(33), 17142-17155. https://doi.org/10.1039/d2ta01889f
[67] Yamaki, J., Tobishima, S., Hayashi, K., Keiichi, S., Nemoto, Y., & Arakawa, M. (1998). A con-sideration of the morphology of electrochemically deposited lithium in an organic elec-trolyte. Journal of Power Sources, 74(2), 219-227. https://doi.org/10.1016/S0378-7753(98)00067-6
[68] Yao, Y.-X., Wan, J., Liang, N.-Y., Yan, C., Wen, R., & Zhang, Q. (2023). Nucleation and Growth Mode of Solid Electrolyte Interphase in Li-Ion Batteries. Journal of the American Chemical Society, 145(14), 8001-8006. https://doi.org/10.1021/jacs.2c13878
[69] Zhang, G., Xiong, T., He, L., Yan, M., Zhao, K., Xu, X., & Mai, L. (2017). Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries. Journal of Materials Science, 52(7), 3697-3718. https://doi.org/10.1007/s10853-016-0732-8
[70] Zhang, L., Fan, H., Dang, Y., Zhuang, Q., Arandiyan, H., Wang, Y., . . . Liu, Y. (2023). Recent advances in in situ and operando characterization techniques for Li7La3Zr2O12-based solid-state lithium batteries. Materials Horizons, 10(5), 1479-1538. https://doi.org/10.1039/d3mh00135k
[71] Zhang, L., Yu, H., Wang, W., Xie, H., Wang, M., Yang, S., . . . Liu, X. (2022). Revealing the lith-ium dendrite deposition/dissolution progression based on Monte Carlo method. Journal of Energy Storage, 55, 105473. https://doi.org/10.1016/j.est.2022.105473
[72] Zhang, R., Wu, Y., Chen, Z., Wang, Y., Zhu, J., & Zhuang, X. (2023). The value of in situ/operando Raman spectroscopy in all-solid-state Li batteries. Journal of Materials Chemistry A, 11(36), 19195-19209. https://doi.org/10.1039/d3ta03514j
[73] Zhang, X., Wang, A., Liu, X., & Luo, J. (2019). Dendrites in Lithium Metal Anodes: Suppres-sion, Regulation, and Elimination. Accounts of Chemical Research, 52(11), 3223-3232. https://doi.org/10.1021/acs.accounts.9b00437
[74] Zhang, X. S., Wan, J., Shen, Z. Z., Lang, S. Y., Xin, S., Wen, R., . . . Wan, L. J. (2024). In Situ Anal-ysis of Interfacial Morphological and Chemical Evolution in All‐Solid‐State Lithium‐Metal Batteries. Angewandte Chemie International Edition, 63(38). https://doi.org/10.1002/anie.202409435
[75] Zhu, Y., Ge, M., Ma, F., Wang, Q., Huang, P., & Lai, C. (2024). Multifunctional Electrolyte Ad-ditives for Better Metal Batteries. Advanced Functional Materials, 34(5), 2301964. https://doi.org/10.1002/adfm.202301964
Downloads
Published
Issue
Section
License
Copyright (c) 2025 by author(s) and Erytis Publishing Limited.

This work is licensed under a Creative Commons Attribution 4.0 International License.