Research on course optimization of financial statistics under the background of digital economy

Authors

  • Xiaowei Ma School of Finance, Anhui University of Finance and Economics, Bengbu, 233030, China Author
  • Xin Zhao School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030, China Author
  • Zijie Wang School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, China Author

DOI:

https://doi.org/10.63313/ESW.9089

Keywords:

Digital economy, Financial statistics, Curriculum optimization

Abstract

With the vigorous development of the digital economy, the new generation of information technology represented by big data, cloud computing, and artificial intelligence is profoundly changing the ecological pattern of the financial in-dustry, and the training of financial statistics professionals is facing new chal-lenges and opportunities. This paper focuses on the optimization research of the training mode of financial statistics professionals under the background of the digital economy, and deeply analyzes the problems of the current training of financial statistics talents, such as fuzzy target positioning, lack of professional curriculum practice, relatively lagging teaching mode and imperfect teaching evaluation system. Given the above problems, this paper puts forward specific suggestions from four aspects: optimizing the talent training program, perfect-ing the innovative education system, building the dual classroom education model, and building three education platforms. This paper is of reference signif-icance for training high-quality financial statistics professionals who meet the needs of the digital economy era and help the development of the financial in-dustry and economic and social progress.

References

[1] Wang, D., Zhao, Y., & Liu, H. N. (2024). Higher education, population mobility, and the de-velopment of the digital economy. Finance Research Letters, 69. doi:10.1016/j.frl.2024.106112

[2] Marino-Romero, J. A., & Folgado-Fernández, J. A. (2024). Digital transformation: A litera-ture review in the context of international economies and finance. South African Journal of Business Management, 55(1). doi:10.4102/sajbm.v55i1.4370

[3] Xing, L., Han, D. H., & Xie, H. (2023). Government digital policy breaks the mystery of "lim-ited participation" in China's home finance market. Scientific Reports, 13(1). doi:10.1038/s41598-023-47372-6

[4] Luo, Q. F., & Wang, J. Y. (2024). Digital finance and green technology innovation: A dual path test based on market and government. Finance Research Letters, 70. doi:10.1016/j.frl.2024.106283

[5] Ceipek, R., Hautz, J., Petruzzelli, A. M., De Massis, A., & Matzler, K. (2021). A motivation and ability perspective on engagement in emerging digital technologies: The case of Internet of Things solutions. Long Range Planning, 54(5). doi:10.1016/j.lrp.2020.101991

[6] Singh, R. K., Agrawal, S., & Modgil, S. (2022). Developing human capital 4.0 in emerging economies: an industry 4.0 perspective. International Journal of Manpower, 43(2), 286-309. doi:10.1108/IJM-03-2021-0159

[7] Fan, J. Y., Wang, K., & Xu, M. L. (2024). Does digital finance development affect corporate cash holdings? Evidence from China. Technology Analysis and Strategic Management. doi:10.1080/09537325.2024.2389137

[8] Duc, D. T. V., Dat, T. T., Linh, D. H., & Phong, B. X. (2024). Measuring the digital economy in Vietnam. Telecommunications Policy, 48(3). doi:10.1016/j.telpol.2023.102683

[9] Miao, Z. L. (2021). Digital economy value chain: concept, model structure, and mechanism. Applied Economics, 53(37), 4342-4357. doi:10.1080/00036846.2021.1899121

[10] Liu, Z. Y., Zhang, Y. C., Zhang, L., & Zhang, J. M. (2025). Digital inclusive finance, digital technology application and entrepreneurial activity: evidence from China's provincial panel data. European Journal of Innovation Management. doi:10.1108/EJIM-03-2024-0330

[11] Yang, J. L., Zhao, Y. J., Han, C. J., Liu, Y. H., & Yang, M. (2022). Big data, big challenges: risk management of financial market in the digital economy. Journal of Enterprise Information Management, 35(4/5), 1288-1304. doi:10.1108/jeim-01-2021-0057

[12] Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M., Delgado, J. M. D., Akanbi, L. A., . . . Owolabi, H. A. (2021). Cloud computing in construction industry: Use cases, benefits and challenges. Automation in Construction, 122. doi:10.1016/j.autcon.2020.103441

[13] Cao, K., Hu, S. Y., Shi, Y., Colombo, A., Karnouskos, S., & Li, X. (2021). A Survey on Edge and Edge-Cloud Computing Assisted Cyber-Physical Systems. IEEE Transactions on Industrial Informatics, 17(11), 7806-7819. doi:10.1109/TII.2021.3073066

[14] Katal, A., Dahiya, S., & Choudhury, T. (2023). Energy efficiency in cloud computing data centers: a survey on software technologies. Cluster Computing-The Journal of Networks Software Tools and Applications, 26(3), 1845-1875. doi:10.1007/s10586-022-03713-0

[15] Radu, L. D. (2017). Green Cloud Computing: A Literature Survey. Symmetry-Basel, 9(12). doi:10.3390/sym9120295

[16] Lin, Y. W., Tseng, S. K., Liao, J. K., & Hsu, T. H. (2022). Developing Smart Home Applications. Mobile Networks and Applications, 27(1), 181-195. doi:10.1007/s11036-020-01639-8

[17] Rodriguez-Garcia, P., Li, Y. D., Lopez-Lopez, D., & Juan, A. A. (2023). Strategic decision making in smart home ecosystems: A review on the use of artificial intelligence and Inter-net of things. Internet of Things, 22. doi:10.1016/j.iot.2023.100772

[18] Yang, Y. Z., Xu, F., Chen, J. S., Tao, C. X., Li, Y. X., Chen, Q. S., . . . Shen, W. (2023). Artificial in-telligence-assisted smartphone-based sensing for bioanalytical applications: A review. Bi-osensors and Bioelectronics, 229. doi:10.1016/j.bios.2023.115233

[19] Mishra, B., & Prasad, E. (2024). A simple model of a central bank digital currency. Journal of Financial Stability, 73. doi:10.1016/j.jfs.2024.101282

[20] Ahluwalia, S., Mahto, R. V., & Guerrero, M. (2020). Blockchain technology and startup fi-nancing: A transaction cost economics perspective. Technological Forecasting and Social Change, 151. doi:10.1016/j.techfore.2019.119854

[21] Martín-Gutiérrez, J., Mora, C. E., Añorbe-Díaz, B., & González-Marrero, A. (2017). Virtual Technologies Trends in Education. Eurasia Journal of Mathematics Science and Technolo-gy Education, 13(2), 469-486. doi:10.12973/eurasia.2017.00626a

[22] Pantano, E., Priporas, C. V., & Dennis, C. (2018). A new approach to retailing for successful competition in the new smart scenario. International Journal of Retail and Distribution Management, 46(3), 264-282. doi:10.1108/IJRDM-04-2017-0080

[23] Wang, X., & Ng, C. T. (2020). New retail versus traditional retail in e-commerce: channel establishment, price competition, and consumer recognition. Annals of Operations Re-search, 291(1-2), 921-937. doi:10.1007/s10479-018-2994-9

[24] Zhang, L., Luo, Y. L., Tao, F., Li, B. H., Ren, L., Zhang, X. S., . . . Liu, Y. K. (2014). Cloud manu-facturing: a new manufacturing paradigm. Enterprise Information Systems, 8(2), 167-187. doi:10.1080/17517575.2012.683812

[25] Ding, X., Qin, M. L., Yin, L. S., Lv, D. Y., & Bai, Y. (2023). Research on FinTech Talent Evalua-tion Index System and Recruitment Strategy: Evidence From Shanghai in China. Sage Open, 13(4). doi:10.1177/21582440231212256.

Downloads

Published

2025-09-02

How to Cite

Research on course optimization of financial statistics under the background of digital economy. (2025). Education and Social Work, 2(3), 6-16. https://doi.org/10.63313/ESW.9089